Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.503
Filtrar
1.
Arch Microbiol ; 206(5): 216, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619638

RESUMO

Fungi are of considerable importance due to their capacity to biosynthesize various secondary metabolites with bioactive properties that draw high attention in new drug discovery with beneficial uses for improving human well-being and life quality. Aspergillus genus members are widespread and cosmopolitan species with varying economic significance in the fields of industry, medicine, and agriculture. Its species are renowned for their biosynthesis of secondary metabolites, characterized by both potent biological activity and structural novelty, making them a substantial reservoir for the development of new pharmaceuticals. The current work aimed at focusing on one species of this genus, Aspergillus wentii Wehmer, including its reported secondary metabolites in the period from 1951 to November 2023. A total of 97 compounds, including nitro-compounds, terpenoids, anthraquinones, xanthones, benzamides, and glucans. A summary of their bioactivities, as well as their biosynthesis was highlighted. Additionally, the reported applications of this fungus and its enzymes have been discussed. This review offers a useful reference that can direct future research into this fungus and its active metabolites, as well as their possible pharmacological and biotechnological applications.


Assuntos
Agricultura , Aspergillus , Humanos , Antraquinonas/farmacologia , Benzamidas
2.
J Int Med Res ; 52(4): 3000605241234574, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597095

RESUMO

Blood-disseminated Aspergillus spondylitis in immunocompetent individuals is rare. The clinical, imaging, and pathological manifestations of this condition are not specific. Therefore, this disease is prone to misdiagnosis and a missed diagnosis. Systemic antifungal therapy is the main treatment for Aspergillus spondylitis. We report a case of blood-disseminated Aspergillus versicolor spondylitis in a patient with normal immune function. The first antifungal treatment lasted for 4 months, but Aspergillus spondylitis recurred a few months later. A second antifungal treatment course was initiated for at least 1 year, and follow-up has been ongoing. Currently, there has been no recurrence.


Assuntos
Aspergilose , Espondilartrite , Espondilite , Humanos , Antifúngicos/uso terapêutico , Aspergilose/diagnóstico , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus , Espondilite/diagnóstico por imagem , Espondilite/tratamento farmacológico , Voriconazol/uso terapêutico
3.
Front Cell Infect Microbiol ; 14: 1345706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606292

RESUMO

Background: Investigations assessing the value of metagenomic next-generation sequencing (mNGS) for distinguish Aspergillus infection from colonization are currently insufficient. Methods: The performance of mNGS in distinguishing Aspergillus infection from colonization, along with the differences in patients' characteristics, antibiotic adjustment, and lung microbiota, were analyzed. Results: The abundance of Aspergillus significantly differed between patients with Aspergillus infection (n=36) and colonization (n=32) (P < 0.0001). Receiver operating characteristic (ROC) curve result for bronchoalveolar lavage fluid (BALF) mNGS indicated an area under the curve of 0.894 (95%CI: 0.811-0.976), with an optimal threshold value of 23 for discriminating between Aspergillus infection and colonization. The infection group exhibited a higher proportion of antibiotic adjustments in comparison to the colonization group (50% vs. 12.5%, P = 0.001), with antibiotic escalation being more dominant. Age, length of hospital stay, hemoglobin, cough and chest distress were significantly positively correlated with Aspergillus infection. The abundance of A. fumigatus and Epstein-Barr virus (EBV) significantly increased in the infection group, whereas the colonization group exhibited higher abundance of A. niger. Conclusion: BALF mNGS is a valuable tool for differentiating between colonization and infection of Aspergillus. Variations in patients' age, length of hospital stay, hemoglobin, cough and chest distress are observable between patients with Aspergillus infection and colonization.


Assuntos
Aspergilose , Infecções por Vírus Epstein-Barr , Pneumonia , Humanos , Herpesvirus Humano 4 , Aspergillus/genética , Tosse , Líquido da Lavagem Broncoalveolar , Sequenciamento de Nucleotídeos em Larga Escala , Antibacterianos , Pulmão , Hemoglobinas , Sensibilidade e Especificidade , Estudos Retrospectivos
4.
Food Res Int ; 184: 114272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609249

RESUMO

Sichuan bacon represents the most prevalent dry-cured meat product across Southwest China, but it is vulnerable to fungal spoilage. In the present study, a total of 47 Sichuan bacons were obtained from different regions of the Sichuan Province and analyzed for the presence of ochratoxin A (OTA), yielding a positive rate of 23.4 % (11/47). All the observed OTA concentrations exceeded the maximum admissible dose in meat products (1 µg/kg) established by some EU countries, with the highest OTA concentration being 250.75 µg/kg, which raises a food safety concern and reveals the need for a standardized scientific processing protocol. Then, an OTA-producing fungus named 21G2-1A was isolated from positive samples and found to be Aspergillus westerdijkiae. Further characterization suggested a positive correlation between fungal growth and OTA production. The optimal temperature for the former was 25 °C, while it was 20 °C for the latter. Although the A. westerdijkiae strain 21G2-1A demonstrated greater mycelium growth in the presence of NaCl, OTA production was significantly dismissed when the salinity was greater than 5 %. Four lactic acid bacteria (LAB) were screened out as antagonists against the ochratoxigenic fungus. In vitro evaluation of the antagonists revealed that live cells inhibited fungal growth, and adsorption also contributed to OTA removal at different levels. This study sheds some light on OTA control in Sichuan bacon through a biological approach.


Assuntos
Ocratoxinas , Carne de Porco , Adsorção , Aspergillus
5.
Microb Cell Fact ; 23(1): 109, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609920

RESUMO

BACKGROUND: Cellulase is considered a group member of the hydrolytic enzymes, responsible for catalyzing the hydrolysis of cellulose and has various industrial applications. Agricultural wastes are used as an inexpensive source for several utilizable products throughout the world. So, searching for cellulase enzymes from fungal strains capable of utilizing agricultural wastes to increase productivity, reduce costs and overcome waste accumulation in the environment is very important to evaluate its potency as a bio-additive to detergent agents. RESULTS: In the current study, the previously identified fungal strain Aspergillus terreus MN901491 was screened and selected for cellulase production. Medium parameters were optimized using one-factor-at-a-time (OFAT) and multi-factorial (Plackett-Burman and Box-Behnken) design methods. OFAT showed the ability of the fungal strain to utilize agricultural wastes (corn cob and rice straw) as a substrate. Also, yeast extract was the best nitrogen source for enhancing cellulase productivity. The most significant variables were determined by Plackett-Burman Design (PBD) and their concentrations were optimized by Response Surface Methodology (RSM) using Box-Behnken Design (BBD). Among eleven independent variables screened by PBD, malt extract, (NH4)2SO4, and KCl were the most significant ones followed by rice straw which affected cellulase production positively. The ANOVA results particularly the R2-value of PBD (0.9879) and BBD (0.9883) confirmed the model efficiency and provided a good interpretation of the experiments. PBD and BBD improved cellulase productivity by 6.1-fold greater than that obtained from OFAT. Medium optimization using OFAT and statistical models increased cellulase production from A. terreus MN901491 by 9.3-fold compared to the non-optimized medium. Moreover, the efficiency of cellulase activity on cotton fabrics as a bio-additive detergent was evaluated and estimated using whiteness and scanning electron microscope (SEM) that affirmed its potential effect and remarkable detergent ability to improve whiteness by 200% in comparison with non-washed fabric and by 190% in comparison with fabric washed by water. CONCLUSION: The presented work was stabilized as a multi-efficiency in which wastes were used to produce cellulase enzyme from the fungal strain, Aspergillus terreus MN901491 as a bio-additive to detergent applications that involved ecofriendly and green processes.


Assuntos
Celulase , Oryza , Detergentes , Aspergillus , Projetos de Pesquisa
6.
J Agric Food Chem ; 72(15): 8415-8422, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573226

RESUMO

Aspergillus westerdijkiae can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in A. westerdijkiae with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated. A total of 309 effector candidate genes were identified from the up-regulated genes in A. westerdijkiae. Endoglucanase H (AwEGH) was significantly induced during the pathogen-host interaction. Deletion of AwEGH resulted in altered fungal growth and morphology and reduced conidia production and germination compared to the wild-type. Further experiments demonstrated that AwEGH plays a role in cell wall integrity. Importantly, disruption of AwEGH significantly reduced the fungal virulence on pear fruits, and this defect can be partly explained by the impaired ability of A. westerdijkiae to penetrate host plants.


Assuntos
Aspergillus , Celulase , Pyrus , Pyrus/genética , Celulase/genética , Virulência , Frutas/genética , Proteínas Fúngicas/genética
7.
BMC Microbiol ; 24(1): 111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570761

RESUMO

BACKGROUND: Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS: Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS: A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS: This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.


Assuntos
Antifúngicos , Aspergilose , Humanos , Antifúngicos/farmacologia , Centros de Atenção Terciária , Aspergilose/epidemiologia , Aspergilose/microbiologia , Testes de Sensibilidade Microbiana , Aspergillus , Azóis , Farmacorresistência Fúngica
8.
Food Microbiol ; 121: 104523, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637085

RESUMO

This study investigated the fungicidal efficiency and mechanism of action of dielectric barrier discharge cold atmosphere plasma (DBD-CAP) in inactivating Aspergillus niger (A. niger) spores. The disinfection efficacy and quality of dried jujube used as the processing application object were also studied. The results indicated that the Weibull + Tail model performed better for spore inactivation curves at different voltages among various treatment times, and the spore cells were reduced by 4.05 log (cfu/mL) in spores suspension at 70 kV after 15 min of treatment. This disinfection impact was further supported by scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, which showed that the integrity of the cell membrane was damaged, and the intracellular content leaked out after DBD-CAP treatment. Elevated levels of reactive oxygen species (ROS) during the treatment increased the relative conductivity of cells, and leakage of nucleic acids and proteins further supported the disinfection impact. Additionally, the growth and toxicity of surviving A. niger spores after treatment were also greatly reduced. When DBD-CAP was applied to disinfecting dried jujube, the spore number exhibited a 2.67 log cfu/g reduction after treatment without significant damage observed onto the quality (P > 0.05).


Assuntos
Aspergillus , Gases em Plasma , Ziziphus , Aspergillus niger , Gases em Plasma/farmacologia , Desinfecção/métodos
9.
Arch Microbiol ; 206(5): 226, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642120

RESUMO

Cucurbits are subject to a variety of stresses that limit their sustainable production, despite their important role in ensuring food security and nutrition. Plant stress tolerance can be enhanced through fungal endophytes. In this study, two endophytes isolated from wild plant roots, were tested to determine their effect on the growth promotion of cucumber (Cucumis sativus L.) plants. The phylogenetic analysis revealed that the designated isolates were Aspergillus elegans and Periconia macrospinosa. The results of the Plant Growth Promoting Fungal (PGPF) tests showed that both Aspergillus elegans and Periconia macrospinosa have a zinc solubilizing capacity, especially A. elegans, with a solubilization index higher than 80%. Also, both have a high salt tolerance (10-15% NaCl for P. macrospinosa and A. elegans, respectively), cellulolytic activity, and inhibition indices of 40-64.53%. A. elegans and P. macrospinosa had antagonistic effects against the cucumber phytopathogenic fungi Verticillium dahliae and Fusarium oxysporum, respectively. However, A. elegans and P. macrospinosa didn't exhibit certain potential plant benefits, such as the production of hydrogen cyanide (HCN) and phosphate solubilization. The chlorophyll content and growth parameters of two-month-old cucumber plants inoculated with the fungal species were significantly better than those of the controls (non-inoculated); the shoot dry weights of inoculated plants were increased by 138% and 170% for A. elegans and P. macrospinosa, respectively; and the root colonization by fungal endophytes has also been demonstrated. In addition to the fact that P. macrospinosa has long been known as PGPF, this is the first time that the ability of A. elegans to modulate host plant growth has been demonstrated, with the potential to be used as a biofertilizer in sustainable agriculture.


Assuntos
Ascomicetos , Aspergillus , Cucumis sativus , Endófitos , Cucumis sativus/microbiologia , Filogenia , Raízes de Plantas/microbiologia
10.
Molecules ; 29(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611726

RESUMO

A fungal isolate Aspergillus terreus PDB-B (accession number: MT774567.1), which could tolerate up to 500 mg/L of cypermethrin, was isolated from the lake sediments of Kulamangalam tropical lake, Madurai, and identified by internal transcribed spacer (ITS) sequencing followed by phylogenetic analysis. The biotransformation potential of the strain was compared with five other strains (A, J, UN2, M1 and SM108) as a consortium, which were tentatively identified as Aspergillus glaucus, Aspergillus niger, Aspergillus flavus, Aspergillus terreus, and Aspergillus flavus, respectively. Batch culture and soil microcosm studies were conducted to explore biotransformation using plate-based enzymatic screening and GC-MS. A mycotransformation pathway was predicted based on a comparative analysis of the transformation products (TPs) obtained. The cytotoxicity assay revealed that the presence of (3-methylphenyl) methanol and isopropyl ether could be relevant to the high rate of lethality.


Assuntos
Aspergillus niger , Aspergillus , Lagos , Piretrinas , Filogenia , Índia
11.
Sci Rep ; 14(1): 8399, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600229

RESUMO

Fungi belonging to the genus Neosartorya (teleomorph of Aspergillus spp.) are of great concern in the production and storage of berries and fruit-based products, mainly due to the production of thermoresistant ascospores that cause food spoilage and possible secretion of mycotoxins. We initially tested the antifungal effect of six natural extracts against 20 isolates of Neosartorya spp. using a traditional inhibition test on Petri dishes. Tested isolates did not respond uniformly, creating 5 groups of descending sensitivity. Ten isolates best representing of the established sensitivity clusters were chosen for further investigation using a Biolog™ MT2 microplate assay with the same 6 natural extracts. Additionally, to test for metabolic profile changes, we used a Biolog™ FF microplate assay after pre-incubation with marigold extract. All natural extracts had an inhibitory effect on Neosartorya spp. growth and impacted its metabolism. Lavender and tea tree oil extracts at a concentration of 1000 µg mL-1 presented the strongest antifungal effect during the inhibition test, however all extracts exhibited inhibitory properties at even the lowest dose (5 µg mL-1). The fungal stress response in the presence of marigold extract was characterized by a decrease of amino acids and carbohydrates consumption and an uptake of carboxylic acids on the FF microplates, where the 10 studied isolates also presented differences in their innate resilience, creating 3 distinctive sensitivity groups of high, average and low sensitivity. The results confirm that natural plant extracts and essential oils inhibit and alter the growth and metabolism of Neosartorya spp. suggesting a possible future use in sustainable agriculture as an alternative to chemical fungicides used in traditional crop protection.


Assuntos
Antifúngicos , Neosartorya , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aspergillus/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Metaboloma , Testes de Sensibilidade Microbiana
12.
World J Gastroenterol ; 30(11): 1545-1555, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38617446

RESUMO

BACKGROUND: The gluten-free diet (GFD) has limitations, and there is intense research in the development of adjuvant therapies. AIM: To examine the effects of orally administered Aspergillus niger prolyl endopeptidase protease (AN-PEP) on inadvertent gluten exposure and symptom prevention in adult celiac disease (CeD) patients following their usual GFD. METHODS: This was an exploratory, double-blind, randomized, placebo-controlled trial that enrolled CeD patients on a long-term GFD. After a 4-wk run-in period, patients were randomized to 4 wk of two AN-PEP capsules (GliadinX; AVI Research, LLC, United States) at each of three meals per day or placebo. Outcome endpoints were: (1) Average weekly stool gluten immunogenic peptides (GIP) between the run-in and end of treatments and between AN-PEP and placebo; (2) celiac symptom index (CSI); (3) CeD-specific serology; and (4) quality of life. Stool samples were collected for GIP testing by ELISA every Tuesday and Friday during run-ins and treatments. RESULTS: Forty patients were randomized for the intention-to-treat analysis, and three were excluded from the per-protocol assessment. Overall, 628/640 (98.1%) stool samples were collected. GIP was undetectable (< 0.08 µg/g) in 65.6% of samples, and no differences between treatment arms were detected. Only 0.5% of samples had GIP concentrations sufficiently high (> 0.32 µg/g) to potentially cause mucosal damage. Median GIP concentration in the AN-PEP arm was 44.7% lower than in the run-in period. One-third of patients exhibiting GIP > 0.08 µg/g during run-in had lower or undetectable GIP after AN-PEP treatment. Compared with the run- in period, the proportion of symptomatic patients (CSI > 38) in the AN-PEP arm was significantly lower (P < 0.03). AN-PEP did not result in changes in specific serologies. CONCLUSION: This exploratory study conducted in a real-life setting revealed high adherence to the GFD. The AN-PEP treatment did not significantly reduce the overall GIP stool concentration. However, given the observation of a significantly lower prevalence of patients with severe symptoms in the AN-PEP arm, further clinical research is warranted.


Assuntos
Aspergillus niger , Aspergillus , Doença Celíaca , Adulto , Humanos , Doença Celíaca/diagnóstico , Dieta Livre de Glúten , Glutens , Prolil Oligopeptidases , Qualidade de Vida
13.
Curr Microbiol ; 81(6): 140, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622481

RESUMO

Environmental problems are caused by the disposal of agrowastes in developing countries. It is imperative to convert such wastes into useful products, which require enzymes such as ß-glucosidase. ß-Glucosidase has variety of applications in biotechnology including food, textile, detergents, pulp and paper, pharmaceutical and biofuel industries. ß-Glucosidase production was performed using the locally isolated Aspergillus protuberus using best growth circumstances on rice husk in solid-state fermentation (SSF). Leaching of ß-glucosidase from fermented rice husk with number of solvents to evaluate their extraction efficacy. Among the different solvents examined, acetate buffer (0.02 M, pH 5.0) proved to be the best solvent. The subsequent parameters were optimized with acetate buffer. Two washes with acetate buffer each by shaking (30 min) in a ratio of 1 g of rice husk: 5 ml of acetate buffer together attained maximum recovery of ß-glucosidase with 41.95 U/g of rice husk.


Assuntos
Aspergillus , Oryza , beta-Glucosidase , Fermentação , Solventes , Acetatos
14.
Mycopathologia ; 189(2): 30, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578519

RESUMO

OBJECTIVE: To study the distribution of pathogenic Aspergillus strains of otomycosis in central China and the identification of their antifungal sensitivity. METHODS: We collected external ear canal secretions clinically diagnosed as otomycosis from April 2020 to January 2023 from the Department of Otolaryngology-Head and Neck Surgery in central China. The pathogenic Aspergillus strains were identified through morphological examination and sequencing. The antifungal sensitivity was performed using the broth microdilution method described in the Clinical Laboratory Standard Institute document M38-A3. RESULTS: In the 452 clinical strains isolated from the external ear canal, 284 were identified as Aspergillus terreus (62.83%), 92 as Aspergillus flavus (20.35%), 55 as Aspergillus niger (12.17%). In antifungal susceptibility tests the MIC of Aspergillus strains to bifonazole and clotrimazole was high,all the MIC90 is > 16 ug/mL. However, most Aspergillus isolates show moderate greatly against terbinafine, itraconazole and voriconazole. CONCLUSION: A. terreus is the most common pathogenic Aspergillus strain in otomycosis in central China. The selected topical antifungal drugs were bifonazole and clotrimazole; the drug resistance rate was approximately 30%. If the infection is persistent and requires systemic treatment, terbinafine and itraconazole can be used. The resistance of Aspergillus in otomycosis to voriconazole should be screened to avoid the systemic spread of infection in immunocompromised people and poor compliance with treatment. However, the pan-azole-resistant strain of Aspergillus should be monitored, particularly in high-risk patients with otomycosis.


Assuntos
Aspergilose , Otomicose , Humanos , Antifúngicos/farmacologia , Otomicose/epidemiologia , Otomicose/microbiologia , Itraconazol , Voriconazol , Terbinafina , Clotrimazol/farmacologia , Aspergilose/epidemiologia , Aspergilose/microbiologia , Aspergillus , Testes de Sensibilidade Microbiana
15.
PLoS One ; 19(3): e0297870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527060

RESUMO

The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.


Assuntos
Benzimidazóis , Carbamatos , Fungicidas Industriais , Nanopartículas Metálicas , Antifúngicos/farmacologia , Aspergillus flavus , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Aspergillus , Bactérias , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/química , Testes de Sensibilidade Microbiana
16.
Int J Food Microbiol ; 415: 110638, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38430685

RESUMO

Biocontrol Agents (BCAs) can be an eco-friendly alternative to fungicides to reduce the contamination with mycotoxigenic fungi on coffee. In the present study, different strains of bacteria and yeasts were isolated from Ivorian Robusta coffee. Their ability to reduce fungal growth and Ochratoxin A (OTA) production during their confrontation against Aspergillus carbonarius was screened on solid media. Some strains were able to reduce growth and OTA production by 85 % and 90 % and were molecularly identified as two yeasts, Rhodosporidiobolus ruineniae and Meyerozyma caribbica. Subsequent tests on liquid media with A. carbonarius or solely with OTA revealed adhesion of R. ruineniae to the mycelium of A. carbonarius through Scanning Electron Microscopy, and an OTA adsorption efficiency of 50 %. For M. caribbica potential degradation of OTA after 24 h incubation was observed. Both yeasts could be potential BCAs good candidates for Ivorian Robusta coffee protection against A. carbonarius and OTA contamination.


Assuntos
Coffea , Lactobacillales , Ocratoxinas , Vitis , Café/metabolismo , Aspergillus/metabolismo , Coffea/microbiologia , Leveduras , Vitis/microbiologia
17.
Int J Biol Macromol ; 265(Pt 1): 130703, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458279

RESUMO

Marine fungal exopolysaccharides play a crucial role in immunoregulation. In this investigation, a novel polysaccharide was extracted from the culture medium of the marine fungus Aspergillus medius SCAU-236. Compositional analysis revealed a structure composed of glucose units with (1,4)-α-D-Glcp, (1,3,4)-ß-D-Glcp, and (1,4,6)-α-D-Glcp, along with side chains of 1-α-D-Glcp linked to carbon 6 of (1,4,6)-α-D-Glcp and carbon 3 of (1,3,4)-ß-D-Glcp. Functional evaluations on RAW264.7 macrophage cells demonstrated Aspergillus medius polysaccharide (ASMP)'s effects on cell proliferation, nitric oxide levels, and the secretion of TNF-α, IL-6, and IL-1ß cytokines. Additionally, metabolomics indicated ASMP's potential to modulate macrophage immune function by impacting key regulatory molecules, including COX-2, iNOS, Nrf2, SLC7A11, GPX4, and ACSL4. The Nrf2/SLC7A11/GPX4 axis and ACSL4 were suggested to be involved in ASMP-induced ferroptosis, leading to increased reactive oxygen species (ROS) levels and lipid peroxidation. These findings propose a unique mechanism by which ASMP exerts immunomodulatory effects through ferroptosis induction, contributing to the understanding of marine-derived compounds in immunomodulation research.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Ferroptose , Fator 2 Relacionado a NF-E2 , Tionucleotídeos , Animais , Camundongos , Aspergillus/química , Polissacarídeos/química , Células RAW 264.7 , Imunidade , Imunomodulação , Carbono
18.
Microb Cell Fact ; 23(1): 73, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431598

RESUMO

BACKGROUND: Lignocellulosic biomass provides a great starting point for the production of energy, chemicals, and fuels. The major component of lignocellulosic biomass is cellulose, the employment of highly effective enzymatic cocktails, which can be produced by a variety of microorganisms including species of the genus Aspergillus, is necessary for its utilization in a more productive manner. In this regard, molecular biology techniques should be utilized to promote the economics of enzyme production, whereas strategies like protoplast fusion could be employed to improve the efficacy of the hydrolytic process. RESULTS: The current study focuses on cellulase production in Aspergillus species using intrageneric protoplast fusion, statistical optimization of growth parameters, and determination of antioxidant activity of fermentation hydrolysate. Protoplast fusion was conducted between A. flavus X A. terreus (PFFT), A. nidulans X A. tamarii (PFNT) and A. oryzae X A. tubingensis (PFOT), and the resultant fusant PFNT revealed higher activity level compared with the other fusants. Thus, this study aimed to optimize lignocellulosic wastes-based medium for cellulase production by Aspergillus spp. fusant (PFNT) and studying the antioxidant effect of fermentation hydrolysate. The experimental strategy Plackett-Burman (PBD) was used to assess how culture conditions affected cellulase output, the best level of the three major variables namely, SCB, pH, and incubation temperature were then determined using Box-Behnken design (BBD). Consequently, by utilizing an optimized medium instead of a basal medium, cellulase activity increased from 3.11 U/ml to 7.689 U/ml CMCase. The following medium composition was thought to be ideal based on this optimization: sugarcane bagasse (SCB), 6.82 gm; wheat bran (WB), 4; Moisture, 80%; pH, 4; inoculum size, (3 × 106 spores/ml); and incubation Temp. 31.8 °C for 4 days and the fermentation hydrolysate has 28.13% scavenging activities. CONCLUSION: The results obtained in this study demonstrated the significant activity of the selected fusant and the higher sugar yield from cellulose hydrolysis over its parental strains, suggesting the possibility of enhancing cellulase activity by protoplast fusion using an experimental strategy and the fermentation hydrolysate showed antioxidant activity.


Assuntos
Celulase , Celulases , Saccharum , Celulose/metabolismo , Protoplastos/metabolismo , Antioxidantes , Saccharum/metabolismo , Aspergillus/metabolismo , Fermentação , Celulase/química , Hidrólise
19.
Sci Rep ; 14(1): 6076, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480751

RESUMO

When onions are improperly stored, a post-harvest disease known as black mold of onion bulbs can result in considerable economic losses. Aspergillus section Nigri, one of many species, has been implicated in the development of black mold. In the present study, rot onion bulbs were collected from markets in Qena, Egypt. Thirteen Aspergillus section Nigri isolates were obtained and identified by morphological and molecular characterization. The ochratoxins potential of isolated A. section Nigri was tested, and three isolates were producers at the range of 1.5-15 ppm. For the presence of pks gene, no amplification product was detected. Using the fungal growth inhibition test, the isolates of A. niger were inhibited by eco-friendly materials Cement and Zeolite. Cement exhibited maximum percentage growth inhibition against the tested isolates at 74.7-86.7%. The pathogenicity activity of the A. niger isolates was tested by inoculation of healthy onion bulbs, other onion bulbs covered with Cement and Zeolite before inoculation by A. niger was used. The two treatments significantly reduced bulbs rot disease of onion than untreated bulbs. Seven and nine isolates showed 0% rot on covered bulbs by Cement and Zeolite, respectively as compared with inoculated onions, which exhibited rot ranging from 55 to 80%. Using eco-friendly materials with efficiency against post-harvest bulbs rot of onion was evaluated in this study.


Assuntos
Ocratoxinas , Zeolitas , Cebolas/microbiologia , Aspergillus/genética , Egito
20.
Microb Cell Fact ; 23(1): 78, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475853

RESUMO

The biosynthetic potency of Taxol by fungi raises their prospective to be a platform for commercial production of Taxol, nevertheless, the attenuation of its productivity with the fungal storage, is the challenge. Thus, screening for a novel fungal isolate inhabiting ethnopharmacological plants, with a plausible metabolic stability for Taxol production could be one of the most affordable approaches. Aspergillus niger OR414905.1, an endophyte of Encephalartos whitelockii, had the highest Taxol productivity (173.9 µg/L). The chemical identity of the purified Taxol was confirmed by HPLC, FTIR, and LC-MS/MS analyses, exhibiting the same molecular mass (854.5 m/z) and molecular fragmentation pattern of the authentic Taxol. The purified Taxol exhibited a potent antiproliferative activity against HepG-2, MCF-7 and Caco-2, with IC50 values 0.011, 0.016, and 0.067 µM, respectively, in addition to a significant activity against A. flavus, as a model of human fungal pathogen. The purified Taxol displayed a significant effect against the cellular migration of HepG-2 and MCF-7 cells, by ~ 52-59% after 72 h, compared to the control, confirming its interference with the cellular matrix formation. Furthermore, the purified Taxol exhibited a significant ability to prompt apoptosis in MCF-7 cells, by about 11-fold compared to control cells, suppressing their division at G2/M phase. Taxol productivity by A. niger has been optimized by the response surface methodology with Plackett-Burman Design and Central Composite Design, resulting in a remarkable ~ 1.6-fold increase (279.8 µg/L), over the control. The biological half-life time of Taxol productivity by A. niger was ~ 6 months of preservation at 4 â„ƒ, however, the Taxol yield by A. niger was partially restored in response to ethyl acetate extracts of E. whitelockii, ensuring the presence of plant-derived signals that triggers the cryptic Taxol encoding genes.


Assuntos
Aspergillus , Paclitaxel , Zamiaceae , Humanos , Aspergillus niger , Endófitos/metabolismo , Células CACO-2 , Cromatografia Líquida , Estudos Prospectivos , Espectrometria de Massas em Tandem , Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...